A constructive approach to the finite congruence lattice representation problem
نویسنده
چکیده
A finite lattice is representable if it is isomorphic to the congruence lattice of a finite algebra. In this paper, we develop methods by which we can construct new representable lattices from known ones. The techniques we employ are sufficient to show that every finite lattice which contains no three element antichains is representable. We then show that if an order polynomially complete lattice is representable then so is every one of its diagonal subdirect powers.
منابع مشابه
The finite lattice representation problem and intervals in subgroup lattices of finite groups
A well-known result of universal algebra states: every algebraic lattice is isomorphic to the congruence lattice of an algebra. It is natural to ask whether every finite lattice occurs as the congruence lattice of a finite algebra. This fundamental question, asked over 45 years ago, is among the most elusive problems of universal algebra. Call a finite lattice L “representable” if it is the con...
متن کاملCongruence Lattices of Finite Algebras a Dissertation Submitted to the Graduate Division of the University of Hawai‘i at Mānoa in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics
An important and long-standing open problem in universal algebra asks whether every finite lattice is isomorphic to the congruence lattice of a finite algebra. Until this problem is resolved, our understanding of finite algebras is incomplete, since, given an arbitrary finite algebra, we cannot say whether there are any restrictions on the shape of its congruence lattice. If we find a finite la...
متن کاملOn nuclei of sup-$Sigma$-algebras
In this paper, algebraic investigations on sup-$Sigma$-algebras are presented. A representation theorem for sup-$Sigma$-algebras in terms of nuclei and quotients is obtained. Consequently, the relationship between the congruence lattice of a sup-$Sigma$-algebra and the lattice of its nuclei is fully developed.
متن کاملCongruence Lifting of Diagrams of Finite Boolean Semilattices Requires Large Congruence Varieties
We construct a diagram D⊲⊳, indexed by a finite partially ordered set, of finite Boolean 〈∨, 0, 1〉-semilattices and 〈∨, 0, 1〉-embeddings, with top semilattice 2, such that for any variety V of algebras, if D⊲⊳ has a lifting, with respect to the congruence lattice functor, by algebras and homomorphisms in V, then there exists an algebra U in V such that the congruence lattice of U contains, as a...
متن کاملOn the Number of Join-irreducibles in a Congruence Representation of a Finite Distributive Lattice
For a finite lattice L, let EL denote the reflexive and transitive closure of the join-dependency relation on L, defined on the set J(L) of all join-irreducible elements of L. We characterize the relations of the form EL, as follows: Theorem. Let E be a quasi-ordering on a finite set P . Then the following conditions are equivalent: (i) There exists a finite lattice L such that 〈J(L),EL〉 is iso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000